SHIVAJI UNIVERSITY, KOLHAPUR

Accredited by NAAC with 'A' Grade Choice Based Credit System

Syllabus for

M. Sc. Part - I

Food Science and Technology

Semester I and II

(Syllabus to be implemented from June 2019)

Department of Food Science and Technology

M. Sc. Food Science and Technology

Pos, PSOs and COs

Program Outcomes (POs)
Post Graduates will have an ability to apply knowledge of Food Science, Food Processing, Food
Engineering and Technology
Post Graduates will have an ability to analysis the problems in food science, food processing and
food technology, and will be competent to control them during foods manufacturing and storage
Post Graduates will have an ability to identify problems and design to resolve the problems in the
actual situations during food processing, food quality controlling, food packaging and storage
Post Graduates will have an ability to express practical proficiency in the field of food analysis, food
processing and food preservation
Post Graduates will have advanced knowledge of food microbiology, food science, food
engineering, food quality and food processing technology
Post Graduates will have an ability of designing and development of food products as per the need
of society keeping the value of food safety and health benefits
Post Graduates will have an ability to understand the impact of the professional scientific and
technical solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development
Post Graduates will have an ability to apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice
Post Graduates will have an ability to function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings
Post Graduates will have an ability to communicate effectively for self development
Post Graduates will have knowledge of industrial economics and management of food industries
Post Graduates will have an ability to recognize the need, and have preparations and ability to
engage in independent and life-long learning in the broadest context of technological change
· · · ·

Program Specific Outcomes (PSOs)							
	Post Graduates will apply the knowledge of food chemistry, food preservation, food processing and						
PSO1	food packaging for the effective utilization of agricultural commodities to develop healthy and						
	nutritious foods						
PSO2	Post Graduates will design economically feasible equipments for the modernization of traditional						
P502	food processing methods						
PSO3	Post Graduates will apply the knowledge of food engineering and technology principles from the						
1505	various aspects of food technology and related disciplines to solve practical and real-world problems						

Course Name		Course Outcomes (CO's)
	CO1	Understanding of the need for food preservation and processing.
	CO2	Understanding of the different preservation technique
CC-101:Principles of Food	CO3	Knowledge of the principles of food spoilage and the ways to prevent
Processing and Preservation	CO4	Understanding of identification & selection of appropriate processing equipments and preservation methods for the specific foods
	CO5	Knowledge indirect approaches to food preservation: packaging, hygienic design, sanitation, GMP
	CO6	Understanding of SOPs and SSOPs during laboratory exercise.
	CO1	Be able to understand and identify the various microbes associated with foods and food groups.
	CO2	Enable students to understand and use various microbiological techniques for the study of foods.
	CO3	Be able to understand and identify the role of this microbe in food spoilage, food preservation.
CC-102: Food Microbiology	CO4	be able to acquire, discover, and apply the theories and principles of food microbiology in practical, real-world situations and problems.
	CO5	Understand the methods used to detect pathogens in foods.
	CO6	Enable students to understand the methods of isolating and characterizing various microbes associated with foods and food groups.
	CO1	The chemistry of food to control a chemical and biochemical reaction that influence food quality
	CO2	The principles behind analytical techniques associated with food components and related problems
	CO3	The role of food nutrients and its use for preservation of food (concepts emphasized in a laboratory experiment)
CC-103: Food Chemistry	CO4	To study the basic nutrients and their requirements for human nutrition
	CO5	Evaluate new product development.
	CO6	Demonstrate practical proficiency in a food analysis laboratory.
	CO1	Better understanding in physiological and metabolic functions of nutrients
	CO2	Familiarize nutritional assessment, RDA and Dietary Recommendations & guidelines
CC-104: Biochemistry and	CO3	Understanding and determining BMR and body surface area
Nutrition	CO4	Understanding of food composition and energy balance in dietary planning
	CO5	Effective understanding of diet plan formulation for health and for nutrition-related disorders.
	CO6	Identifying appropriate techniques for Biochemical analysis of blood, urine

	CO1	Understanding the basic principles of various food unit operations and its applications in food processing								
	CO1 CO2	Knowledge of the food processing equipments used for the different unit operations.								
	CO3	Understanding and practical experience of equipments, & how various unit operations work individually and together.								
CC-201: Principles of Food	CO4	Understanding of the calculations of mass balance and energy balance of food processes								
Engineering	CO5	The students understood the importance of Food Process Engineering as one of the major pillars of Food Sci. and Tech. discipline.								
	CO6	Obtain knowledge in application of scientific principles in the processing technologies specific to the materials.								
	CO7	Develop an ability to identify, formulate, and solve engineering problems								
	CO1	Understand the structure of the grains (Cereals and Legumes) and the components of commercial products								
	CO2	Better understanding of the concepts of physiological characteristics of cereals and legumes								
CC-202: Cereal and Legume	CO3	Able to gain knowledge in different processing of Cereals and legumes and also its value added products.								
Technology	CO4	Identify the common faults and causes in cereal products								
	CO5	Understand quality attributes the laboratory techniques to assess grain and flour quality								
	CO6	Thorough Knowledge and understandings of the specific processing technologies used for different cereals and legumes and								
	CO1	Preserving the fruits and vegetables and their products results into availability of them in off season.								
	CO2	Bi-products can be prepared from fruits and vegetables.								
CC-203: Fruit and Vegetable	CO3	Storage of food material in perfect consumable condition for a longer time without undergoing any spoilage can be possible.								
Technology	CO4	By the use of various methods shelf -life of fruits and vegetables can be extended and used as material for processing units.								
	CO5	Processing gives value addition to fruit and vegetables due to which cash crop farmers get more income from the field.								
	CO6	Identify the common faults and causes in fruits and vegetable product processing								
	CO1	Application of biological and engineering principles to problems involving microbial and biological/biochemical systems.								
	CO2	Understand the work space, tool and equipment for fermented products								
	CO3	Understanding the basic principles of fermentation process and its applications in food processing								
CC-204: Fermentation	CO4	Recognize the fundamentals of fermentation technology and Assess modeling of bioprocesses								
Technology	CO5	Distinguish bioreactor operations and scale-up of bioreactors								
	CO6	Analyze the bioprocess paradigm: Scale-down, simulation and economics, sterilization, and bio-burden in biological manufacturing								

M. Sc. FOOD SCIENCE AND TECHNOLOGY STRUCTURE (CBCS PATTERN) (2019-20)

M. Sc. Part – I

				SEMESTER	– I (Duration –	Six Month)							
		COURSE CODE	TITLE OF THE PAPER	TEACHING SCHEME Theory and Practical			EXAMINATION SCHEME						
ТҮРЕ	SR.						Universi	ty assessme	ent (UA)	Internal Assessment (IA)			
	NO.			LECTURES (per week)	HOURS (per week)	CREDITS	MAX. MARKS	MINI. MARKS	EXAM. HOURS	MAX. MARKS	MINI. MARKS	EXAM. HOURS	
	1	CC-101	Principles of Food Processing & Preservation	4	4	4	80	32	3	20	8	1	
CGPA	2	CC-102	Food Microbiology	4	4	4	80	32	3	20	8	1	
	3	CC-103	Food Chemistry	4	4	4	80	32	3	20	8	1	
	4	CC-104	Biochemistry and Nutrition	4	4	4	80	32	3	20	8	1	
	5	CCPR-105	Laboratory Course I	16	16	8	200	80				*	
r	Total (A)					24	520			80			
Non-CGPA	1	AEC-106	Communicative English - I	2	2	2				50	20	2	
				SEMESTER	– II (Duration -	- Six Month)							
	1	CC-201	Principles of Food Engineering	4	4	4	80	32	3	20	8	1	
	2	CC-202	Cereal and Legume Technology	4	4	4	80	32	3	20	8	1	
	3	CC-203	Fruit and Vegetable Technology	4	4	4	80	32	3	20	8	1	
	4	CC-204	Fermentation Technology	4	4	4	80	32	3	20	8	1	
	5	CCPR-205	Laboratory Course II	16	16	8	200	80				*	
Total (B)						24	520			80			
Non-CGPA	1	SEC-106	Fundamentals of Information Technology - I	2	2	2				50	20	2	
To	tal (A + I	B)				48	1040			160			

M. Sc. FOOD SCIENCE AND TECHNOLOGY STRUCTURE (CBCS PATTERN) (2019-20)

M. Sc. Part – II

				SEMESTER –	III (Duration	– Six Month)					
				TEAC	CHING SCHE	EXAMINATION SCHEME						
	SR.	COURSE CODE	TITLE OF THE PAPER	Theory and Practical			University assessment (UA)			Internal Assessment (IA)		
	NO		TITLE OF THE FALEK	LECTURES (per week)	HOURS (per week)	CREDITS	MAX. MARKS	MINI. MARKS	EXAM. HOURS	MAX. MARKS	MINI. MARKS	EXAM. HOURS
	1	CC-301	Technology of Meat, Fish and Poultry Products	4	4	4	80	32	3	20	8	1
CGPA	2	CCS-302	Technology of Milk and Milk Products	4	4	4	80	32	3	20	8	1
	3	CCS-303	Food Additives, Contaminants and Toxicology	4	4	4	80	32	3	20	8	1
	4	DSE-304	Food Quality and Safety Management	4	4	4	80	32	3	20	8	1
	5	CCPR-305	Laboratory Course III	16	16	8	200	80				*
T	Total (C)					24	520			80		
Non-CGPA	1	AEC-306	Communicative English - II	2	2	2				50	20	2
Non-CGIA	2	EC	SWAYAM/MOOCs/Online			and credits wil		ied on SWAY	YAM / MOC	OC Course /	Online Cour	ses
				SEMESTER –	IV (Duration	<u>– Six Month</u>					•	
	1	CC-401	Technology of Oilseeds and Fats	4	4	4	80	32	3	20	8	1
	2	CCS-02	Food Biotechnology	4	4	4	80	32	3	20	8	1
	3	CCS-403	Post-Harvest Technology of Plantation Crops	4	4	4	80	32	3	20	8	1
	4	DSE-404	Food Packaging	4	4	4	80	32	3	20	8	1
	5	CCPR-405	Project & Laboratory Course IV	16	16	8	200	80				*
T	Total (D)					24	520			80		
Non-CGPA	1	SEC-406	Fundamentals of Information Technology - II	2	2	2				50	20	2
	2	GE-407	Food Analysis	2	2	2				50	20	2
Tota	al (C + 1))				48	1040			160		

CC-101: Principles of Food Processing and Preservation

Scope and importance of food processing: national and international perspectives. Food processing techniques and types of processed products (Minimally Processed, Intermediate Processed and Highly Processed Food Products) Principles of preservation methods. Chemical preservations of foods.

Food preservation by low-temp: Cold Storage, Chilling and super chilling, Refrigeration, Freezing and Freeze-drying. Cryogenic preservation. Advantages and disadvantages of low temperature preservation techniques.

Unit-3 (1credit, 15 lectures)

Food preservation by heating: Drying, Dehydration, Osmotic Dehydration, Blanching, Cooking, Canning, Pasteurization, Sterilization, Baking and Extrusion cooking.

Non-thermal preservation: Hydrostatic pressure, Dielectric heating, Ohmic Heating, Radiofrequency heating, Microwave processing, Irradiation, Membrane technology and Hurdle technology.

Suggested Readings

Hosahalli S. Ramaswamy, Michele Marcotte. 2005. Food Processing: Principles and Applications. CRC Press. Taylor & Francis Group. Boca Raton, Finland. Fellows, P. and Ellis H. 1990. Food Processing Technology: Principles and Practice, New York. Jelen, P. 1985. Introduction to Food Processing. Prentice Hall, Reston Virginia, USA. Norman N. Potter and Joseph H. Hotchkiss. 1998. Aspen Publishers Inc., Maryland. Arsdel W.B., Copley, M.J. and Morgen, A.I. 1973. Food Dehydration. AVI, Westport. Bender, A.E. 1978. Food Processing and Nutrition. Academic Press, London. Lewis, M.J. 1990. Physical Properties of Food and Food Processing Systems. Woodhead, UK. Wildey, R.C.1994. Minimally Processed Refri. Fruits and Vegetables. Chapman and Hall, London.

COURSE CONTENT

Unit-2

Unit-1

Unit-4

(1credit, 15 lectures)

(4 credits, 60 lectures)

(1credit, 15lectures)

(1credit, 15 lectures)

History and scope of food microbiology. Types of micro-organism normally associated with foodbacteria, yeast and mold. Diversity of Habitat. Microbial growth pattern. Intrinsic and extrinsic factors affecting growth of micro-organisms.

Micro-organisms in natural food products and their control. Biochemical changes caused by microorganisms, deterioration and spoilage of various types of food products, microbial food fermentation. Contaminants of foods-stuffs, vegetables, cereals, pulses, oilseeds, milk and meat during handling and processing.

Microbial quality control and microbial standards for foods. Food microbiology and public health. Food born diseases and food born illness. Food poisoning and microbial toxins. Food borne intoxicants and mycotoxins.

Microbiological examination of food. Direct examination, Culture Techniques Enumeration methods – Plate count and Most probable number count. Rapid detection techniques for spoilage micro-organisms and toxins.

Suggested Readings

M. R. Adams and M. O. Moss 2008. Food Microbiology. Royal Society of Chemistry, UK
William C. Frazier, Dennis C. Westhoff. 2013. Food Microbiology. Mc Graw Hill India.
Branen A.L. and Davidson, P.M. 1983. Antimicrobials in Foods. Marcel Dekker, New York.
Jay J.M. 1986. Modern Food Microbiology. 3rd Edn. VNR, New York.
Robinson, R.K. Ed. 1983. Dairy Microbiology. Applied Science, London.

Unit-2

Unit-1

Unit-3

Unit-4

(1 credit, 15 lectures)

(1 credit, 15 lectures)

(1credit, 15 lectures)

(1 credit, 15 lectures)

(4 credits, 60 lectures)

CC- 102: Food Microbiology

Unit-1 (1 credit, 15 lectures) Food chemistry-definition and importance. Water in food. Structure of water and ice. Phase diagram of water. Sorption isotherm. Water activity and shelf life of food. Chemistry and classification of Lipids. Nomenclature of fatty acids. Physical and chemical properties of lipids. Use of lipids in foods and effects of processing on functional properties. Unit-2 (1 credit, 15 lectures) Chemistry and classification of Carbohydrates. Structure and nomenclature of carbohydrates. Chemical reactions of carbohydrates. Functional properties and preparation of sugars, polysaccharides and modified Chemistry and classification of Protein and amino acids. Structure of protein. Denaturation and functional properties of proteins. Maillard browning. Protein concentrates, isolates and hydrolyzates.

Unit-3

Structure and solubility of Vitamins and Minerals. Acid/Base chemistry for minerals. Chemical and functional stability of vitamins and minerals. Effect of processing on vitamins and minerals. Antinutritional factors in food and methods of inactivation.

Unit-4

Food flavour and colours. Natural food flavours and taste compounds. Pigments in animal and plant tissue. Changes in food flavours and colours due to processing.

Suggested Readings

Srinivasan Damodaran and Kirk L. Parkin. 2017. Fennema's Food Chemistry. CRC Press. Taylor & Francis Group. Finland.
Meyer, L.H. 1973. Food Chemistry. East-West Press Pvt. Ltd., New Delhi.
John M. deMan. 2013. Principles of Food Chemistry. Springer. New York.
Aurand, L.W. and Woods, A.E. 1973. Food Chemistry. AVI, Westport.
Birch, G.G., Cameron, A.G. and Spencer, M. 1986. Food Science. Pergamon Press, New York.

(4 credits, 60 lectures)

(1 credit, 15 lectures)

(1 credit, 15 lectures)

CC-103: Food Chemistry

Unit-1 (1credit, 15 lectures) Concept and scope of Nutrition and Health. Metabolic Rate, Nutritional Requirement and RDA. Human Physiology: Respiratory System, Gastrointentestinal System and Excretory System. Blood and blood composition. Nutritional assessment of human: nutritional anthropometry and biochemical tests Unit-2 (1credit, 15 lectures) Nutritional Biochemistry. Carbohydrate Metabolism: Digestion and absorption of carbohydrates. Glycolysis, TCA cycle & energy generation, gluconeogenesis,glycogenesis, glycogenolysis. Blood sugar regulation. Disorders of carbohydrate metabolism. Lipid Metabolism: triacylglycerol, adipose tissue, ketone bodies, cholesterol

Oxidation and biosynthesis of fatty acids. Lipid storage disorders and metabolic syndromes.

Unit-3(1 credit, 15 lectures)Protein Metabolism: Digestion and absorption of Protein. Urea cycle.Biosynthesis of nonessential amino acids.Biochemical role of Vitamins and Minerals. Deficiency disorders.Example of Vitamina acids.

Unit-4 (1 credit, 15 lectures) Nutrition of dietary fibres. Energy value of foods. Protein quality: PER, NPU and BV. Formulation of diets and food products for specific needs. Nutraceuticals and functional foods.

Suggested Readings

Shubangini A Joshi.1998. Nutrition and Dietetics. Tata McGraw Hill Pub. Co. Ltd., New Delhi
Srilakshmi. B. 2005. Dietetics. 5th Edition.New Age International (P) Ltd, Publishers, Chennai.
National Institute of Nutrition. 2005. Dietary Guidelines for Indians – A Manual, Hyderabad.
Altschul, A.M. and Wilcke, H.L. Ed. 1978. New Protein Foods. Vol. III. Academic Press, New York.
Bodwell, C.E. Ed. 1977. Evaluation of Proteins for Humans. AVI, Westport. Milner, M., Scrimshaw,
N.S. and Wang, D.I.C. Ed. 1978. Protein Resources and Technology. AVI, Westport.

CC-104: Biochemistry and Nutrition

(4 credits, 60 hours)

CCPR- 105: Laboratory Course - I

(4 credits, 60 hours)

Group - A

Study of laboratory instruments/equipments Determination of moisture content of given food sample Determination of fat content by soxhlet method Determination of protein by kjeldahl`s method Determination of ash content from given food sample Determination of crude fibre by weende's method Isolation and characterization of starch Isolation and characterization of casein

Group - B

Preparation and sterilization of nutrient media and utensils Determination of Total Plate Count Determination of Yeast and Mold Count Determination of Most Probable Number Isolation of pure culture by Streak plate technique Isolation of pure culture by Spread plate technique Isolation of pure culture by Pour plate technique Isolation of Halophilic Bacteria Isolation of Antibiotic producers Study of Gram staining techniques Study of Monochrome staining techniques Study of Negative staining techniques Study of IMViC test

Group - C

Determination of Iron Determination of Calcium Estimation of starch by using anthrones method Estimation of reducing sugar by fehlings method Estimation of non-reducing sugar by fehling solution method Estimation of fructose by using resorcinol method Estimation of protein by using lowry,s method Estimation of protein by biuret method Estimation of Ascorbic Acid by using 2, 6 dichlorophenol indophenols

Group - D

Anthropometric Assessment of Body Determination of energy value of food Determination of BMR Determination of Haemoglobin Determination of Daily energy requirement of body Study of Heamatology Analyzer Study of Blood Biochemestry Analyzer Study of Balanced Diet Plan

Visit to Analytical Lab/Pathological Lab/Processing Industry

AEC-106: Communicative English – I

(2 credits, 30 hours)

CC- 201: Principles of Food Engineering

Unit-1 (1credit, 15 lectures) Definitions of Velocity and Speed, Acceleration, Force and Momentum, Weight, Pressure, Work and Energy, Power. Unit operation in food engineering. Heat transfer-modes of heat transfer, conduction, convection and radiation. Heat exchangers and their designs. Heat processing of foods: Evaporation and Concentration, Dehydration and Drying, Boiling and Condensation, Blanching, Pasteurization, Sterilization and crystallization. Unit-2 (1credit, 15 lectures) Mass and energy balance. Fick's law of diffusion. Theories and unit operations of mass transfer. Fluid flow, fluid statics, fluid dynamics, fluid flow applications. Newton's Law of Rheology. Freezing operations and Planck's Equation. Freezing curve. Unit-3 (1credit, 15 lectures) Mechanical separation-filtration, membrane concentration, sieving, centrifugation, sedimentation, Mechanical handling-conveying and elevation. Size reduction and classification-mixing, kneading, blending.

Unit-4 (1credit, 15 lectures) Applied mathematics, numerical analysis, computational mathematics. Statistics, mean, mode, median, variance and standard deviation Statistical tools for data analysis: MS Excel, Matlab, Minitab.

Statistical approach for new product development: Response Surface Methodology.

Suggested Readings

Romeo T. Toledo. 1999. Fundamentals of Food Process Engineering. Third Edition. Aspen publisher. S. S. H. Rizvi and Gauri S. Mittal. 1992. Experimental methods in food engineering. Kluwer Academic Publishers Group.

Heldman, D.R. and Lund, D.B. Ed. 1992. Handbood of Food Engineering marcel Dekker, New York. Batty, J.C. and Folkman, S.L. 1983. Food Engineering Fundamentals. John wiley and Sons, N.York. Harper, J.C. 1975. Elements of Food Engineering. AVI, Westport.

(4 credits, 60 lectures)

Introduction to cereals, production trends, structure and nutrient distribution in cereals. Wheat types, milling of wheat, quality of flour and flour treatment. Technology of bread, biscuits, cakes, durum wheat, breakfast cereals and extruded products. Corn-wet milling and dry milling. Corn starch and its hydrolyzed syrups. Corn flakes and Popcorn. Rice milling, milling machines, effect of different factors on milling yield and rice quality, parboiling of rice, and rice products. Minor cereals processing.

Unit-3 (1credit, 15 lectures) Introduction to legumes, production trends, structure and nutrient distribution in legumes. Dhal milling and processing of pulses.

Post harvest processing of legume and pulses. Types of milling. Pre milling treatments. Milling of individual pulses: Pigeonpea, Chickpea, Urdbean, Mungbean, Lentils etc.

Unit-4

Unit-1

Unit-2

Technology of cereal and legume based products.

Traditional fermented cereal and legume based food products: Milk Substitute, Meat Analogue, Tofu, Miso, Temphe, Soy sauce, idli and dosa, dhokala.

Instant food and premix.

Suggested Readings

Samuel A. Matz. 1991. Bakery Tech. and Engineering. Van Nostrand Reinhold Publisher, New York. Salunkhe, D.K., Kadam, S.S. Ed. 1989. Handbook of World Food Legumes: Chemistry, Processing and Utilization, (3 vol. set). CRC Press, Florida.

EIRI Book. 2007. Breakfast, Dietary Food, Pasta & Cereal Products Technology (hand Book). Engineers India Research Ins. Publisher.

Chakraverty, A. 1988. Post-harvest Tech of Cereals, Pulses and oilseeds. Oxford and IBH, New Delhi. Mathews, R.H.1989. Legumes: Chemistry, Tech. and Human Nutrition. Marcel Dekker, New York. Pomeranz, Y. 1978. Wheat: Chemistry and Tech. Am. Assoc. of Cereal Chemist. St. Paul, Minnesota.

CC-202: Cereal and Legume Technology

(1credits, 15 lectures)

(1credit, 15 lectures)

(4 credits, 60 lectures)

(1credit, 15 lectures)

CC-203: Fruit and Vegetable Technology

Unit-1 (1credit, 15 lectures) Introduction to fruits and vegetable processing industry and market statistics. Structure, cellular components and composition of fruits and vegetables. Post harvest technology of fruits and vegetables: Harvesting, Handling, Processing. Principles and methods of fruit and vegetable preservation. Principles and methods of storage: natural, ventilated, low temperature storage, MAP, CAP. Unit-2 (1 credit, 15 lectures) Freezing and freeze-drying of fruits and vegetables. Drying and dehydration of fruits and vegetables. Irradiation of fruits and vegetables. Commercial canning of fruits and vegetables. Unit-3 (1 credits, 15 lectures) Fruit and Vegetable Juices, Fruit Syrups, Cordials and Nectars. Fruit preserve, Candies, Crystallized fruits and vegetables. Jams, Jellies, Marmalades. Pickles, Chutney, Sauces and Ketchup. Pectin and related compounds. Unit - 4(1 credits, 15 lectures) Beverage technology: Alcoholic, Non-alcoholic and carbonated beverages.

(4 credits, 60 lectures)

Utilization of fruits and vegetable waste. Processing of mineral water and water standards for food processing plants. Fruit product order and quality control.

Suggested Readings

Salunkhe, D.K. and Kadam, S.S. Ed. 1995. Handbook of Fruit Science and Technology:
Production, Composition and Processing. Marcel Dekker, New York.
Salunkhe, D.K. and Kadam, S.S. Ed. 1995. Handbook of Vegetable Science and Technology.
Production, Composition, Storage and processing Marcel Dekker, New York.
Srivastava, R.P. and Kumar, S. 1998. Fruit and Vegetable Preservation: Principles and Practices. 2nd Ed. International Book Distributing Co. Lucknow.
L. R. Verma and Dr. V. K. Joshi. 2000. Postharvest Technology of Fruits and Vegetables: General concepts and principles. Vol I and II. Indus Publishing Company, New Delhi.
W. V. Crusee. 2009. Commercial Fruit and Vegetable Products. Agrobios, India.
S. Rajarathnam and R. S. Ramteke. 2011. Advances in Preservation and Processing Technologies of Fruits and Vegetables. NIPA, New Delhi.
Lal G., Siddappa G. and Tondon G. L. 1986. Preservation of Fruits and Vegetables, Indian Council of Agril. Research, New Delhi.

CC-204: Fermentation Technology	(4 credits, 60 lectures)
Unit-1 Origin and history of food fermentation.	(1credits, 15 lectures)
Range of fermentation process: biomass, enzymes, metabolites, colours an Microbial growth kinetics: Batch Culture, Continuous Culture and Fedbate	ch Culture
Types of fermentation sub-merged/solid state, Batch /continuous fermenta	tion.
Unit-2 Fermenter design.	(1credits, 15 lectures)
Body construction, Ports, Sensor Probe, Valves	
Aeration and agitation system. Impellers, Baffels and Spargers. Sterilization of Fermenter, Air, Media and Exhaust gas.	
Unit - 3 Operational measurement and quality control. Principles of downstream processes and product recovery. Effluent treatment.	(1credits, 15 lectures)
Unit -4	(1credits, 15 lectures)
Commercial production process for beer, wine and vinegar. Traditional fer Production of alcohols, organic acids, enzymes, colours and flavours.	mented foods.

Fermentation economics.

Suggested Readings

Stanburry P. F., Whitaker A. And Hall S. J. 1995. Principles of Fermentation Technology. 2nd Edition. Pergamon Press, Oxford UK.

William C. Frazier, Dennis C. Westhoff. 2013. Food Microbiology. Mc Graw Hill India.
Y. H. Hui, Lisbeth Meunier-Goddik, Jytte Josephsen, Wai-Kit Nip, Peggy S. Stanfield. 2004.
Handbook of Food and Beverage Fermentation Technology. CRC Press
Steinkraus, K.H. 1983. Handbook of Indigenous Fermented Foods. Marcel Dekker, New York.
Brian McNeil and Linda Harvey. 2008. Practical Fermentation Technology. John Wiley & Sons Ltd.,
England

CCPR-205: Laboratory Course - II

(4 credits, 60 hours)

Group - A

Determination of Bulk Density Determination of Angle of Repose Determination of Water Absorption Capacity Determination of Alcoholic Acidity of Flour Determination of Gluten content Determination of Dough Raising Capacity Determination of Particle size of flour Study of germination/sprouting process Study of heat exchangers and dryers

Group - B

Preparation and analysis of Bread Preparation and analysis of Biscuits Preparation and analysis of Cookies Preparation and analysis of Cake Preparation and analysis of Soymilk Preparation and analysis of Tofu Preparation and analysis of Idli Preparation and analysis of Dhokala Preparation and analysis of Popped Cereals

Group - C

Preparation and analysis of Fruit Juice and RTS Preparation and analysis of Squash Preparation and analysis of Jam Preparation and analysis of Jelly Preparation and analysis of Marmalade Preparation and analysis of Tomato Sauce /Tomato Ketchup Preparation and analysis of Tutti fruity / Amla Candy Preparation and analysis of Hard Boiled Candy Preparation and analysis of Fruit syrup /Synthetic syrup

Group - D

Determination of Browning intensity Blanching of Fruits and Vegetables Dehydration of Fruits and Vegetables Determination of Drying Rate Curve Preparation and analysis of Pickle Preparation and analysis of Wine Preparation and analysis of Sauerkraut Measurement of B.O.D. Measurement of C.O.D.

Visit to food processing plants:

Flour Mill/Bakery Unit/Fruit & Vegetable Processing/Brewery/Winery

SEC-106: Fundamentals of Information Technology – I

(2 credits, 30 hours)